Incorporation of [14C] amino acid precursors into adipose-tissue protein: An insulin stimulation not involving glucose or amino acid transport

Insulin has been found to stimulate incorporation of ¹⁴C of [3-¹⁴C]pyruvate or [1-¹⁴C]acetate into adipose-tissue protein (Table I). This effect is not concerned with the rate of glucose transport¹, as no glucose was added to the incubation medium, nor with amino acid transport from medium to intracellular phase², as the [14C]amino acid was formed intracellularly; the effect was to some degree specific for amino acid metabolism since incorporation of ¹⁴C from pyruvate into the lipid was not significantly increased under these conditions. In concurrent experiments with rat diaphragm muscle³ similar results have been obtained. These findings are consistent with a general concept of insulin action which includes enhancement of amino incorporation into protein and facilitation of glucose and amino acid transport as separate special cases4.

TABLE I incorporation of ^{14}C from $[3^{-14}\text{C}]$ pyruvate or $[\text{i-}^{14}\text{C}]$ acetate into PROTEIN AND LIPID OF RAT EPIDIDYMAL ADIPOSE TISSUE.

The two fat pads (300-400 mg) from a non-fasting Holtzman rat were incubated with shaking for 2 h at 37° in 1 ml Krebs-Henseleit bicarbonate buffer containing sodium pyruvate (1.5 mg/ml) without or with 0.01 unit insulin/ml. In the [1-14C] acetate experiments, acetate was also added to a total concentration of 3 mg/ml. The protein was isolated⁵, using 20 mg bovine albumin as carrier, from the residue of the lipid⁶ extraction. The results are expressed as 10³ counts/min incorporated/g wet adipose tissue.

Radioactive amino acid precursor* added	108 counts/ min/ml medium	Protein		Lipid	
		No insulin	With insulin	No insulin	With insulin
[3- ¹⁴ C]pyruvate	4.4.102	13.2 ± 0.5 (9)**	17.2 ± 0.5 (9)	252 ± 9 (9)	222 ± 9 (9)
[1- ¹⁴ C]acetate	1.6.103	2.0 \pm 0.1 (12)	$2.7 \pm 0.1 (12)$	74 ± 6 (12)	89 ± 4 (12

^{*}The final protein samples were hydrolysed and the amino acids separated chromatographically7; the 14C of [3-14C] pyruvate was found chiefly in alanine.

S.E., no. of samples in parentheses. The difference between protein samples from control and insulin-treated tissues was in each case significant to P < 0.001.

This investigation was aided by grants from the Life Insurance Medical Research Fund, from Eli Lilly and Company, and from the Wallace C. and Clara A. Abbott Memorial Fund of the University of Chicago.

Department of Physiology, University of Chicago, Chicago, Ill. (U.S.A.) M. E. KRAHL

¹ R. Levine, M. S. Goldstein, B. Huddlestun and S. P. Klein, Am. J. Physiol., 163 (1950) 70. ² D. M. KIPNIS AND M. W. NOALL, Biochim. Biophys. Acta, 28 (1958) 226.

³ K. L. MANCHESTER AND M. E. KRAHL, Abstract, The Biochemical Society, Aberdeen, Sept. 18, 1959.

⁴ M. E. KRAHL, Perspectives Biol. and Med., 1 (1957) 69. ⁵ I. G. Wool and M. E. Krahl, Am. J. Physiol., 196 (1959) 961.

⁶ A. I. Winegrad and A. E. Renold, J. Biol. Chem., 233 (1958) 267.

⁷ K. L. Manchester and F. G. Young, Biochem. J., 72 (1959) 136.